Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.10.557067

ABSTRACT

This article presents a comprehensive protocol for establishing primary human lung organoid-derived air-liquid interface (ALI) cultures from cryopreserved human lung tissue. These cultures serve as a physiologically relevant model to study human airway epithelium in vitro. The protocol encompasses lung tissue cryostorage, tissue dissociation, lung epithelial organoid generation, and ALI culture differentiation. It also demonstrates SARS-CoV-2 infection in these cultures as an example of their utility. Quality control steps, ALI characterization, and technical readouts for monitoring virus response are included in the study. For additional details on the use and execution of this protocol, please refer to Diana Cadena Castaneda et al. (https://doi.org/10.1016/j.isci.2023.107374).


Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.30.534980

ABSTRACT

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an early inflammatory/immune signature preceding a late type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.07.511319

ABSTRACT

With the success of mRNA vaccines against coronavirus disease 2019 (COVID-19), strategies can now focus on improving vaccine potency, breadth, and stability. We present the design and preclinical evaluation of domain-based mRNA vaccines encoding the wild-type spike-protein receptor-binding (RBD) and/or N-terminal domains (NTD). An NTD-RBD linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2-8{degrees}C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses and protection from viral challenge were observed against wild-type, beta, delta, or omicron (BA.1) compared with mRNA-1273 immunized mice, especially at lower vaccine dosages. These results support clinical assessment of mRNA-1283 (NCT05137236).


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.07.479468

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOC) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOC. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses against VOC, as compared to non-human primates or humans, suggesting caution should be exercised when interpreting data for this animal model.


Subject(s)
Coronavirus Infections
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.28.21268247

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant has led to growing concerns of increased transmissibility and escape of both natural and vaccine-induced immunity. In this analysis, sera from adult participants in a phase 2 clinical study (NCT04405076) were tested for neutralizing activity against B.1.1.529 after a 2-dose (100 g) mRNA-1273 primary vaccination series and after a 50-g mRNA-1273 booster dose. Results from this preliminary analysis show that 1 month after completing the primary series, mRNA-1273-elicited serum neutralization of B.1.1.529 was below the lower limit of quantification; however, neutralization was observed at 2 weeks after the mRNA-1273 booster dose, although at a reduced level relative to wild-type SARS-CoV-2 (D614G) and lower than that observed against D614G at 1 month after the primary series.


Subject(s)
Coronavirus Infections
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.456015

ABSTRACT

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 {micro}g of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.{beta} (heterologous), which encompasses the spike sequence of the B.1.351 (beta or {beta}) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the {beta} variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost {beta}-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the {beta} variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. One-sentence summarymRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.


Subject(s)
Severe Acute Respiratory Syndrome
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.28.449914

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated as D614G). Results showed minimal effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), B.1.617.2 (Delta), and P.1 (Gamma) showed decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization.


Subject(s)
Coronavirus Infections , COVID-19
8.
Assessment & Evaluation in Higher Education ; : 1-16, 2021.
Article in English | Academic Search Complete | ID: covidwho-1246505

ABSTRACT

Students’ perception and learning practices about online timed take-home examinations and the factors affecting students’ learning practices in the presence of Covid-19 have largely been unexplored. Nine students of arts, business and science sub-degree programmes participated in this study. Semi-structured interviews and reflective journals were used to collect data. Findings indicate students’ perceptions cover types and level of difficulty of examination questions, the use of online platforms, time spans, benefits and challenges of take-home examinations. The learning practices encompassed in-class online learning, after-class learning commitments and the responses during take-home examinations. The help of instructors, the participants’ personal characteristics, the assessment design and online platforms are factors that affected the participants’ learning practices. Pedagogical implications and future studies of take-home examinations are discussed. [ABSTRACT FROM AUTHOR] Copyright of Assessment & Evaluation in Higher Education is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.21.445189

ABSTRACT

Background: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. Methods: Nonhuman primates received 30 or 100 microgram of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 microgram at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. Results: Eight weeks post-boost, 100 microgram x2 of mRNA-1273 induced reciprocal ID50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 microgram x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 microgram. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 microgram x2 of mRNA-1273, and there was a ~2-log reduction in sgRNA in NHP that received two doses of 30 microgram compared to controls. In nasal swabs, there was a 1-log10 reduction observed in the 100 microgram x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. Conclusions: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.


Subject(s)
Inflammation
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256716

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic of coronavirus disease 2019 (COVID-19) that has led to more than 3 million deaths worldwide. Safe and effective vaccines are now available, including the mRNA-1273 prototype vaccine, which encodes for the Wuhan SARS-CoV-2 Spike protein stabilized in the prefusion conformation by 2 proline substitutions. This vaccine showed 94% efficacy in prevention of symptomatic COVID-19 disease in a phase 3 clinical study. Recently, SARS-CoV-2 variants have emerged, some of which have shown decreased susceptibility to neutralization by vaccine-induced antibody, most notably the B.1.351 variant, although the overall impact on vaccine efficacy remains to be determined. In addition, recent evidence of waning antibody levels after infection or vaccination point to the need for periodic boosting of immunity. Here we present the preliminary evaluation of a clinical study on the use of the prototype mRNA-1273 or modified COVID-19 mRNA vaccines, designed to target emerging SARS-CoV-2 variants as booster vaccines in participants previously vaccinated approximately 6 months earlier with two doses of the prototype vaccine, mRNA-1273. The modified vaccines include a monovalent mRNA-1273.351 encoding for the S protein found in the B.1.351 variant and multivalent mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. As single 50 g booster vaccinations, both mRNA-1273 and mRNA-1273.351 had acceptable safety profiles and were immunogenic. Antibody neutralization titers against B.1.351 and P.1 variants measured by SARS-CoV-2 pseudovirus neutralization (PsVN) assays before the booster vaccinations, approximately 6 to 8 months after the primary series, were low or below the assay limit of quantification, although GMTs versus the wild-type strain remained above levels likely to be protective. Two weeks after the booster vaccinations, titers against the wild-type original strain, B.1.351, and P.1 variants increased to levels similar to or higher than peak titers after the primary series vaccinations. Although both mRNA-1273 and mRNA-1273.351 boosted neutralization of the wild-type original strain, and B.1.351 and P.1 variants, mRNA-1273.351 appeared to be more effective at increasing neutralization of the B.1.351 virus versus a boost with mRNA-1273. The vaccine trial is ongoing and boosting of clinical trial participants with the multivalent mRNA-1273.211 is currently being evaluated.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.20.440647

ABSTRACT

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3-100 micrograms of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naive hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.


Subject(s)
COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.13.439482

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic that has led to more than 2.8 million deaths worldwide. Safe and effective vaccines are now available, including Moderna's COVID-19 vaccine (mRNA-1273) that showed 94% efficacy in prevention of symptomatic COVID-19 disease in a phase 3 clinical study. mRNA-1273 encodes for a prefusion stabilized full length spike (S) protein of the Wuhan-Hu-1 isolate. However, the emergence of SARS-CoV-2 variants has led to concerns of viral escape from vaccine-induced immunity. Several emerging variants have shown decreased susceptibility to neutralization by vaccine induced immunity, most notably the B.1.351 variant, although the overall impact on vaccine efficacy remains to be determined. Here, we present the initial evaluation in mice of two updated COVID-19 mRNA vaccines designed to target emerging SARS-CoV-2 variants: (1) monovalent mRNA-1273.351 encodes for the S protein found in the B.1.351 lineage and (2) mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. Both vaccines were evaluated as a 2-dose primary series in mice; mRNA-1273.351 was also evaluated as a booster dose in animals previously vaccinated with 2-doses of mRNA-1273. The results demonstrated that a primary vaccination series of mRNA-1273.351 was effective at increasing neutralizing antibody titers against the B.1.351 lineage, while mRNA-1273.211 was most effective at providing broad cross-variant neutralization in mice. In addition, these results demonstrated a third dose of mRNA-1273.351 significantly increased both wild-type and B.1.351-specific neutralization titers. Both mRNA-1273.351 and mRNA-1273.211 are currently being evaluated in additional pre-clinical challenge models and in phase 1/2 clinical studies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.19.21249592

ABSTRACT

The current COVID-19 (coronavirus disease 19) pandemic, caused by SARS-CoV-2, disproportionally affects the elderly and people with comorbidities like obesity and associated type 2 diabetes mellitus. Small animal models are crucial for the successful development and validation of antiviral vaccines, therapies and to study the role that comorbidities have on the outcome of viral infections. The initially available SARS-CoV-2 isolates require adaptation in order to use the mouse angiotensin converting enzyme 2 (mACE-2) entry receptor and to productively infect the cells of the murine respiratory tract. We have mouse-adapted SARS-CoV-2 by serial passaging a clinical virus isolate in the lungs of mice. We then used low doses of this virus in mouse models for advanced age, diabetes and obesity. Similar to SARS-CoV-2 infection in humans, the outcome of infection with mouse-adapted SARS-CoV-2 resulted in enhanced morbidity in aged and diabetic obese mice. Mutations associated with mouse adaptation occurred in the S, M, N and ORF8 genes. Interestingly, one mutation in the receptor binding domain of the S protein results in the change of an asparagine to tyrosine residue at position 501 (N501Y). This mutation is also present in the newly emerging SARS-CoV-2 variant viruses reported in the U.K. (20B/501Y.V1, B1.1.7 lineage) that is epidemiologically associated with high human to human transmission. We show that human convalescent and post vaccination sera can neutralize the newly emerging N501Y virus variant with similar efficiency as that of the reference USA-WA1/2020 virus, suggesting that current SARS-CoV-2 vaccines will protect against the 20B/501Y.V1 strain.


Subject(s)
Diabetes Mellitus , COVID-19 , Obesity , Virus Diseases
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.23.344085

ABSTRACT

The search for vaccines that protect from severe morbidity and mortality as a result of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Several vaccine candidates are currently being tested in the clinic. Inactivated virus and recombinant protein vaccines can be safe options but may require adjuvants to induce robust immune responses efficiently. In this work we describe the use of a novel amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile). This amphiphile is water soluble and exhibits massive translocation to lymph nodes upon local administration, likely through binding to albumin. IMDQ-PEG-CHOL is used to induce a protective immune response against SARS-CoV-2 after single vaccination with trimeric recombinant SARS-CoV-2 spike protein in the BALB/c mouse model. Inclusion of amphiphilic IMDQ-PEG-CHOL in the SARS-CoV-2 spike vaccine formulation resulted in enhanced immune cell recruitment and activation in the draining lymph node. IMDQ-PEG-CHOL has a better safety profile compared to native soluble IMDQ as the former induces a more localized immune response upon local injection, preventing systemic inflammation. Moreover, IMDQ-PEG-CHOL adjuvanted vaccine induced enhanced ELISA and in vitro microneutralization titers, and a more balanced IgG2a/IgG1 response. To correlate vaccine responses with control of virus replication in vivo, vaccinated mice were challenged with SARS-CoV-2 virus after being sensitized by intranasal adenovirus-mediated expression of the human angiotensin converting enzyme 2 (ACE2) gene. Animals vaccinated with trimeric recombinant spike protein vaccine without adjuvant had lung virus titers comparable to non-vaccinated control mice, whereas animals vaccinated with IMDQ-PEG-CHOL-adjuvanted vaccine controlled viral replication and infectious viruses could not be recovered from their lungs at day 4 post infection. In order to test whether IMDQ-PEG-CHOL could also be used to adjuvant vaccines currently licensed for use in humans, proof of concept was also provided by using the same IMDQ-PEG-CHOL to adjuvant human quadrivalent inactivated influenza virus split vaccine, which resulted in enhanced hemagglutination inhibition titers and a more balanced IgG2a/IgG1 antibody response. Enhanced influenza vaccine responses correlated with better virus control when mice were given a lethal influenza virus challenge. Our results underscore the potential use of IMDQ-PEG-CHOL as an adjuvant to achieve protection after single immunization with recombinant protein and inactivated virus vaccines against respiratory viruses, such as SARS-CoV-2 and influenza viruses.


Subject(s)
COVID-19 , Inflammation
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.22.343673

ABSTRACT

The energetics of the folding of a single-stranded nucleic acid into a stem-loop structure depend on both the composition and order of its bases. Composition tends to reflect genome-wide evolutionary pressures. Order better reflects local pressures. Base order is likely to be conserved when encoding a function critical for survival. The base order-dependent component of the folding energy has shown that a highly conserved region in HIV-1 genomes associates with an RNA structure. This corresponds to a packaging signal that is specifically recognized by the nucleocapsid domain of the Gag polyprotein. Long viewed as a potential HIV-1 "Achilles heel," the signal can be targeted by a recently described antiviral compound (NSC 260594) or by synthetic oligonucleotides. Thus, a conserved base-order-rich region of HIV-1 may facilitate therapeutic attack. Although SARS-CoV-2 differs in many respects from HIV-1, the same technology displays regions with a high base order-dependent folding energy component, which are also highly conserved. This indicates structural invariance (SI) sustained by natural selection. While the regions are often also protein-encoding (e.g. NSP3, ORF3a), we suggest that their nucleic acid level functions, such as the ribosomal frameshifting element (FSE) that facilitates differential expression of 1a and 1ab polyproteins, can be considered potential "Achilles heels" for SARS-CoV-2 that should be susceptible to therapies like those envisaged for AIDS. The region of the FSE scored well, but higher SI scores were obtained in other regions, including those encoding NSP13 and the nucleocapsid (N) protein.


Subject(s)
Acquired Immunodeficiency Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL